
Why have we chosen to use the serial port,

when it is more complicated and offers fewer

connections than the printer port? For a

beginners’ course using the serial port has

several advantages:

- The serial port is well protected against

accidental damage. Cables can safely be

plugged in while the computer is on.

- There is usually a spare serial port which

can be used for experiments.

- The serial port can deliver enough current

to power a wide range of projects, and so a

separate power supply is not required.

This course is also easy on the pocket, which

is important, not least for educational estab-

lishments and those on youth employment

programmes. Apart from the small printed

circuit board, you will need just a few every-

day components, such as pushbuttons, NPN

transistors, resistors, LEDs, capacitors,

diodes and an LDR. All the connections of the

serial port are brought out to sockets on the

circuit board and there is also a small proto-

typing area for building experimental circuits.

All the projects are programmed in Visual
BASIC 5. The programs (available on floppy

disk, order code 000074-11, or for download

from www.elektor-electronics.co.uk) are

clearly commented, so that you can easily
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PC Serial 
Peripheral Design (1)
Part 1: Introduction, course hardware, first program
By B. Kainka

At one time or another many readers may have thought about control-
ling or monitoring equipment using their PC. Electronics projects using
a PC need not be lavish or expensive: often the interfaces provided on
the PC can be used directly. In this series of articles we present a range
of projects using the serial (RS232) port, controlled using simple pro-
grams written in Visual Basic.



change them to try out your own ideas. In

later instalments, we will deal with complex

topics such as real-time control and connec-

tion to external circuitry. As a bonus, readers

will be introduced to applications of various

sensor technologies, which arise naturally

through the course.

The printed circuit board

The projects are based on a simple circuit

board. As the circuit in Figure 1 shows, it is

a small prototyping board fitted with four SIL

socket strips and a 9-way sub-D socket. Two

of the four SIL sockets are connected to the

sub-D socket, while the other two are simply

connected to one another.

Figure 2 shows the component layout for the

circuit board, and the assembled board is

shown in Figure 3. Table 1 gives a summary

of the pinout of the 25-way and 9-way con-

nectors normally employed for serial ports,

showing the names and functions of all the

signals that make up the interface. A male

connector is invariably provided on the PC

side, and so we require a female connector: a

9-way extension cable can be used to con-

nect the PC to the circuit board described

here. If your PC is equipped with a 25-way

connector, you will need to use a suitable

adapter.

Data is normally transferred over the ser-

ial interface using the TXD (transmit data)

and RXD (receive data) signals. The other sig-

nals have auxiliary functions concerned with

setting up and controlling data transfer. They

are known as ‘handshake signals’, because

they are used to acknowledge transfer of data

between two pieces of equipment. A partic-

ularly useful feature of the handshake signals

is that their state can be read or written

directly.

The pin labelling on the circuit board fol-

lows that of the 9-way sub-D plug. Each pin

of this plug is taken to two SIL socket pins,

except for GND, which is taken to four. The

small prototyping area on the circuit board is

divided into five groups of connections with

four SIL socket pins in each. Four SIL sockets

with turned pins are used in total; two 20-pin

DIL sockets — which are easier to obtain —

can be used instead.

Visual BASIC

You will need a copy of Visual Basic, version 5

or 6, for this course. All source code is avail-

able from the Elektor Electronics website in

VB5 format. The programs can also be loaded

and compiled without modification using

VB6. If you do not have a copy of Visual Basic
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Figure 1. Circuit diagram of the experimental PCB.

Figure 2. Component layout for the experimental PCB.
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Figure 3. The assembled board.



and balk at its price, you can obtain a free

version of VB5 from Microsoft: ‘Visual Basic

Control Creation’ VB5CCE is available on the

Internet at

http://msdn.microsoft.com/vbasic/
downloads/cce/default.asp

Our first program: I/O test

And now, at last, to our first program. It’s a

simple test program which gives direct

access to all serial port connections (except

RXD). The three outputs can be tog-

gled with a click of the mouse, while

the four inputs are read and dis-

played. The program is configured to

use COM2 by default; however, it

will recognise when COM2 is in use

and automatically attempt to use

COM1 instead. It is assumed that

most PCs have a mouse connected

to COM1 and that COM2 is unused.

Frequently the connectors on PCs

are not correctly labelled: in that

case this program can help to iden-

tify them correctly. If you have two

spare COM ports, you can use COM1

or COM2 as you prefer.

What is ‘ON’, and what is ‘OFF’?

If you connect a voltmeter between

DTR and GND (ground), you will find

that ‘ON’ gives a positive voltage of

about 10 V, while ‘OFF’ gives a volt-

age of about –10V with respect to

GND. Now connect a wire between,

for example, the DTR output and the

DSR input. As soon as DTR is turned
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Figure 4. Visual Basic (VB5CCE) is available for download here.

Figure 5. Window showing direct access to
serial port signals.

Table 1   Connector pinouts and signal names

Pin Pin Input/ Symbol Function
25-way 9-way Output

2 3 Out TxD Transmit Data
3 2 In RxD Receive Data
4 7 Out RTS Request To Send
5 8 In CTS Clear To Send
6 6 In DSR Data Set Ready
7 5 GND Ground
8 1 In DCD Data Carrier Detect

20 4 Out DTR Data Terminal Ready
22 9 In RI Ring Indicator



on, the DSR input reports ‘ON’ too.

Our first practical application is to

poll a switch (Figure 6). In order to

read the state of the switch, the DTR

signal must be turned on. Now we

have a complete PC application: the

switch can be placed in some remote

location and it state will be relayed

to the PC. What that might represent

is up to you: you might, perhaps,

want to monitor whether that mouse-

trap in the cellar has been set off.

We round off this first instalment

with another neat little application.

Here a light-emitting diode is con-

nected to and controlled by the PC

(Figure 7). Many Elektor Electronics
readers will protest loudly that one

should never connect an LED with-

out a current-limiting resistor. Here,

though, it is not necessary, as a resis-

tor is effectively built into the PC.

Another protest: in the

datasheets, the maximum allowable

reverse voltage of an LED is given as

3 V or 5 V. In this circuit, however,

reverse voltages of up to 10 V can

appear across the LED. Experience

has shown that this is not in practice

a problem. Even with a reverse volt-

age of 20 V no significant current

flows in most LEDs. But we should

provide a ‘clean’ solution: an addi-

tional silicon diode (for example, a

1N4148) will protect the LED from

excessive reverse voltages. The

diode can be connected either in

anti-parallel or in series with the

LED (Figure 8). As a rule of thumb,

for serious projects the reverse volt-

age should be limited to 5 V; for

experimental purposes we can allow

ourselves a little latitude.

(000074-1)
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Figure 6. A simple switch is connected for the first experiment.
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On Project Disk #000074-11:
PORTS.BAS 845 03-28-00 5:31p
ANPEL.FRX 1,094 04-10-00 6:01p
BLINK.FRX 1,094 04-10-00 6:43p
COUNTER1.FRX 1,094 05-04-00 6:49p
COUNTER2.FRX 1,094 05-04-00 7:14p
CONTENTS.TXT 0 06-15-00 9:35a
IOTEST.FRX 1,094 05-04-00 12:21p
AMPEL.VBP 497 04-10-00 6:01p
BLINK.VBP 497 04-10-00 6:43p
COUNTER1.VBP 499 05-04-00 6:49p
COUNTER2.VBP 499 05-04-00 7:14p

IOTEST.VBP 497 05-04-00 1:13p
AMPEL.VBW 81 05-05-00 12:57p
BLINK.VBW 80 05-05-00 4:26p
COUNTER2.VBW 80 05-05-00 4:27p
IOTEST.BW 80 06-08-00 1:15p
PORT.DLL 46,080 02-07-99 1:15p
BLINK.FRM 3,488 04-10-00 6:43p
COUNTER1.FRM 3,422 05-04-00 6:49p
COUNTER2.FRM 6,683 05-04-00 7:14p
IOTEST.FRM 5,317 05-04-00 12:21p
ANPEL.FRM 3,669 04-10-00 6:01p

22 file(s)         77,784 bytes



In the first article in this series we introduced
the IOtest program. The majority of readers
with some programming experience will be
interested in how we access the serial inter-
face using Visual Basic. Here we will use a
library of program subroutines called
PORT.DLL written by H.-J.Berndt. This DLL
file is available from the Free Downloads sec-
tion of the Elektor Electronics website at
http://www.elektor-electronics.co.uk. For
those with no access to the Internet, the file
is also found on the diskette containing the
course software (see Readers Services
pages).

In Visual Basic, all the procedures and
functions defined in the DLL are declared and
must be in an external module. In our case
this is called PORTS.BAS (Listing 1).

The experienced (Visual Basic) user will
probably recognise the most commonly used
routines for serial communications, e.g.,
OPENCOM which is used to open the inter-
face for communication and indicates that it
is available to the program. SENDBYTE and
READBYTE are used to transfer data over the
serial interface. For our purposes here, the

more important routines are those
that access the control and status
lines of the interface. The procedures
DTR, RTS and TXD control these out-
put signals and CTS, DSR, RI and
DCD read the state of these input
signals. One input line that you can-
not read directly is RXD. This is
because it would normally be used
to carry the received serial data.
Also the PORT.DLL file contains rou-
tines for time measurement that we
will be using later, as well as many
other functions for the other PC inter-
faces (Parallel port, Joystick, Sound
and Video).

I/Otest

The application program I/Otest is
shown in Listing 2.
The essential core of the program is
the timer procedure
Timer1_Timer, which is automati-
cally called at predetermined inter-
vals. The check boxes 1 to 4 are acti-
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Part 2: Software

By B. Kainka

In this second part we
concentrate on software.
We take a closer look at the
IOtest program presented in
the first article and use simple program examples
in Visual Basic to control a model traffic light and a clock generator.

Figure 1. The traffic light LEDs.
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vated and will show a tick when the corre-
sponding input line is switched to a ‘1’. The
three output lines are switched when the
user activates the corresponding check box.

The other parts of the program are used
to select and open the interface and we will
look at them a little later. We can see that the
interface will be initialised with a communi-
cation rate of 1200 baud, no parity bit, 8 data
bits and 1 stop bit. For our purposes here,
these communication parameters are entirely
superfluous because we are only interested
in the control lines that form part of the inter-
face. Windows will however configure the
port as if it were to communicate with, for
example, a modem. But all we need to do
here is to read the input status lines and
write to the output control lines.

Traffic Light controller

If you are new to Visual Basic it is a good idea
to choose some hardware that you can actu-
ally see working. For this reason a model traf-
fic light with three LEDs was chosen (Fig-
ure 1). The effects of current limiting and
reverse voltage on the LEDs were discussed in
the first article of this series.

The model lamp is well suited to experi-
menting for our first excursion into program-
ming with Visual Basic. For the program
development you will need to start with a
new blank form, and using the mouse, select
and drag graphic control elements from the
list of tools onto the form (Figure 2). The size
of each element and its position can be eas-
ily altered. Each element has a complete
range of properties that can be attached to it,
including size, colour, text and much more.
Those that you are not sure of yet can be sim-
ply left as they are. For our application we use
the following elements:

- Two labels with the properties (the text)
Caption = “fast” and “slow” respectively.

- A horizontal slider or scroll bar (HScrollBar)
with the properties Min = 50, Max = 500
and Position =100

- A timer (Timer) with the property Interval =
100, i.e. 100 ms

- Two Option Buttons with the Caption =
“COM1” and “COM2” respectively, the but-
ton for COM2 is “true”

- The form itself contains the Caption = “Traf-
fic Light”

Figure 3 gives an overview of the project. The
aforementioned module PORTS.BAS is also
included in the project and contains all the
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Listing 2
User program IOtest
Private Sub Form_Load()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then

i = OPENCOM(“COM1,1200,N,8,1”)

Option1.Value = True

End If

If i = 0 Then MsgBox (“COM Interface Error”)

TXD 1

RTS 1

DTR 1

TIMEINIT

End Sub

Private Sub Form_Unload(Cancel As Integer)

CLOSECOM

End Sub

Private Sub Option1_Click()

i = OPENCOM(“COM1,1200,N,8,1”)

If i = 0 Then MsgBox (“COM1 not available”)

TXD 1

RTS 1

DTR 1

End Sub

Private Sub Option2_Click()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then MsgBox (“COM2 not available”)

TXD 1

RTS 1

DTR 1

End Sub

Private Sub Timer1_Timer()

Check1.Value = CTS()

Check2.Value = DSR()

Check3.Value = DCD()

Check4.Value = RI()

If Check5.Value Then TXD 1 Else TXD 0

If Check6.Value Then DTR 1 Else DTR 0

If Check7.Value Then RTS 1 Else RTS 0

End Sub

Listing 1
Declarations for PORT.DLL

Declare Function OPENCOM Lib “Port” (ByVal A$) As Integer

Declare Sub CLOSECOM Lib “Port” ()

Declare Sub SENDBYTE Lib “Port” (ByVal b%)

Declare Function READBYTE Lib “Port” () As Integer

Declare Sub DTR Lib “Port” (ByVal b%)

Declare Sub RTS Lib “Port” (ByVal b%)

Declare Sub TXD Lib “Port” (ByVal b%)

Declare Function CTS Lib “Port” () As Integer

Declare Function DSR Lib “Port” () As Integer

Declare Function RI Lib “Port” () As Integer

Declare Function DCD Lib “Port” () As Integer

Declare Sub DELAY Lib “Port” (ByVal b%)

Declare Sub TIMEINIT Lib “Port” ()

Declare Sub TIMEINITUS Lib “Port” ()

Declare Function TIMEREAD Lib “Port” () As Long

Declare Function TIMEREADUS Lib “Port” () As Long

Declare Sub DELAYUS Lib “Port” (ByVal l As Long)

Declare Sub REALTIME Lib “Port” (ByVal i As Boolean)



In the normal course of events
the program will open COM2. If
however you want to use COM1
then you can point to the corre-
sponding button and click. This will
cause Windows to call the proce-
dure Option1.Click which will open
COM1 and check for a successful
returned status. This automatic
selection and manual override has
already been used in the IOtest pro-
gram and will also used in the
upcoming program examples. It
would be a simple matter to add
extra buttons to control the COM3
and COM4 interface.

necessary declarations for PORT.DLL. It
needs to linked with the software in each of
the projects so that they can all have access
to the procedures and functions that are
needed to control the serial interface.

In a Visual Basic program, events are
produced by procedures that are isolated
from each other. The overall flow of the pro-
gram is controlled by Windows. The proce-
dure ‘Private Sub Form_Load()’ will be called
right at the beginning of the program (List-
ing 3) This procedure contains all the instruc-
tions needed to initialise the serial interface.
In this case, the serial interface will be open
and all the outputs of the interface will be
switched off. Lastly, the global variable

‘Time’ is reset to zero.
The function OPENCOM in

PORT.DLL returns a value indicating
if the interface has been successfully
opened. It will not be possible to
open it if it is already in use by
another program. Initially the pro-
gram will use this function to open
COM2. If the return value from this
function is 0 i.e. it is busy then
COM1 will be opened. This will be
displayed on the screen with the
value of option button 1 (COM1)
‘True’. If both COM1 and COM2 are
busy then a failure message will pop
up in a MessageBox. 
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Listing 3
Traffic lights program
Dim Time As Integer

Private Sub Form_Load()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then

i = OPENCOM(“COM1,1200,N,8,1”)

Option1.Value = True

End If

If i = 0 Then MsgBox (“COM Interface Error”)

TXD 0

RTS 0

DTR 0

Time = 0

End Sub

Private Sub Form_Unload(Cancel As Integer)

CLOSECOM

End Sub

Private Sub HScroll1_Change()

Timer1.Interval = HScroll1.Value

End Sub

Private Sub Option1_Click()

i = OPENCOM(“COM1,1200,N,8,1”)

If i = 0 Then MsgBox (“COM1 not available”)

TXD 1

RTS 1

DTR 1

End Sub

Private Sub Option2_Click()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then MsgBox (“COM2 not available”)

TXD 1

RTS 1

DTR 1

End Sub

Private Sub Timer1_Timer()

Time = Time + 1

If Time = 1 Then red

If Time = 40 Then redyellow

If Time = 50 Then green

If Time = 90 Then yellow

If Time = 100 Then Time = 0

End Sub

Sub red()

RTS 1

DTR 0

TXD 0

End Sub

Sub redyellow()

RTS 1

DTR 1

TXD 0

End Sub

Sub yellow()

RTS 0

DTR 1

TXD 0

End Sub

Sub green()

RTS 0

DTR 0

TXD 1

End Sub



Blinker/Clock generator
This next application is a blinker or clock gen-
erator with adjustable frequency (Figure 5).
The circuit is the same as for the traffic light
experiment. This time, the TXD output is per-
manently switched on while DTR and RTS are
switched in anti-phase, i.e., when one is on the
other is off and vice versa. It is not too difficult
to see how this program can be expanded to
turn it into a mini running light display.

The software from the traffic light pro-
gram is used again for this exercise. The
timer procedure is, however, new (Listing 4).
One difference here is that no additional pro-
cedures are called to control the output lines,
they are switched directly from inside ‘timer-
procedure’.

The LEDs on the DTR and RTS lines should
now blink alternately. The speed of the blink-
ing can be increased or decreased. As you
increase the speed you may notice that the
timing for each blink is not precisely regular.
The reason for this is that Windows cannot
maintain a time interval of exactly 50 mil-
liseconds because it is a multitasking oper-
ating system many other processes will be
running at the same time. For this reason
Windows is generally considered to be not
capable of  ‘real time’ operation. However,
there are some tricks and techniques that we
can use and we shall be investigating them
in the coming articles.

(00074-2e)

dure can be called to find out if a
specific period has elapsed before,
for example, the traffic light LEDs
are changed. The speed of switch-
ing has been chosen arbitrarily and
can be easily altered. The IF state-
ments are used to compare the
time values and switch the corre-
sponding LED.

The form  (Figure 4) also con-
tains a horizontal slider or scroll
bar. This slider is used to alter the
speed of the traffic light changing.
As soon as the slider is moved, the
procedure Hscroll1.Change is
called. This procedure will change
the interval in the timer corre-
sponding to the actual position
(Value) of the slider control. The
slider is calibrated from 50 to 500;
the timer can therefore be altered in
the range from 50 ms to 500 ms.
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Figure 2. The traffic light controller
form.

Figure 3. Project overview.

Figure 4. The traffic light program
during run time.

Figure 5. The Blinker Program.

Listing 4
Timerprocedure for blink program

Private Sub Timer1_Timer()

Time = Time + 1

If Time = 1 Then

RTS 1

DTR 0

End If

If Time = 2 Then

RTS 0

DTR 1

End If

If Time = 2 Then Time = 0

End Sub

For the traffic light controller we
will need some timer function to
introduce a delay between chang-
ing the lights. In the DLL there is,
for example, a procedure called
DELAY. However, unlike program-
ming in DOS, individual Windows
programs do not have the entire
processing time devoted to them. It
would be pointless to write a pro-
cedure containing a simple timing
loop to give us the delays that we
need for the traffic light. Instead,
the traffic light timer will be event
controlled. For this we will use a
Windows timer. The timer period is
set to 100 ms. The procedure will be
called every 100 ms.

In the timer procedure there is
a variable called “Time” which is
incremented and gives the time in
tenths of a second, so the proce-



We have already seen in this course that the
output signals of the RS-232 interface swing
between –10 V and +10 V. However,
because the output current is limited, it is
safe to connect an LED directly. But what
exactly are the characteristics of the out-
puts? We shall attempt to answer this ques-
tion now.

In general, manufacturers of PC equip-
ment follow the RS-232 standard, in which
the voltage levels used to send data are
specified. It was originally specified that
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PC Serial 
Peripheral Design (3)

By B. Kainka

In this third part we look at the
output signals of the RS-232 interface.
In order to control devices with these out-
put signals, it is necessary to know what can (and
what cannot!) be expected of the output drivers: this
knowledge can then be used in our experiments.

the output voltages should be
±15 V, while at the inputs a signal
of at least ±3 V is required. Voltages
below –3 V are considered to be a
logic ‘1’, and voltages above +3 V
are considered logic ‘0’. Since the
outputs deliver ±15 V, and the
inputs require only ±3 V, reliable
data transfer is assured even over
long cables. Noise is much less of a
problem than it is with for example
the TTL logic levels of 0 V and 5 V.

The standard in theory
and practice
Modern PCs no longer adhere to the
requirement to generate output volt-
ages of ±15 V. The PC’s power sup-
ply produces +12 V and –12 V, which
are used instead. The ultimate volt-
age is somewhat lower than this
again: this is due to the output dri-
vers used. On separate interface
cards the 1488 driver and 1489



receiver devices are generally used:
these have set a de facto standard
for the behaviour of RS-232 inter-
faces. Figure 1 shows the circuit of
the driver in the IC. It is clear how
the current limiting (set at 10 mA
according to the datasheet) is pro-
vided. If the output is short-circuited,
no more than 10 mA can flow. It can
also be seen that 12 V cannot be
expected at the output even when a
12 V power supply is used: the volt-
age drop of the output stage is such
that only about 10 V will be pro-
duced.

Many PCs are now built with
more integrated components, with
output drivers already included,
which can produce rather different
results. It is interesting to determine
the exact voltages and currents

available from a particular PC. The
trend among PC manufacturers is
always faster, bigger, better: that
means, as far as the RS-232 interface
is concerned, higher baud rates over
longer cables with greater reliability.
To ensure that the higher capaci-
tance of longer cables does not have
too great an adverse effect on the
pulse shape, the maximum output
current must be increased. The out-
puts of more recent PCs therefore are
capable of delivering around 20 mA
rather than 10 mA. A total of up to
60 mA can be drawn from the inter-
face. That is handy for our experi-
ments, and is another reason for
wanting to make accurate measure-
ments. On some PCs output voltages
of ±12 V can indeed be found: these
presumably use MOSFETs in their
driver output stages.

Measuring the output
characteristics
The output characteristics can be
measured very roughly using, for
example, a digital multimeter. Fig-
ure 2 shows how to measure the
open-circuit voltage and short-circuit
current. ‘Short-circuit’ sounds rather
dangerous, but because of its cur-
rent limiting the RS-232 interface will
not be damaged.
The author’s PC measures as fol-
lows:
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Table 1
R [kΩ] I [mA] U [V]
infinite 0 10.9

22 0.48 10.6
10 1,04 10,4
4.7 2.12 10
2.2 4.18 9.2
1 7.8 7.8

0.47 12.55 5.9
0.33 14.84 4,.9
0.01 25 0.25

Figure 1. Schematic of the 1488 (source: Motorola)
Figure 2. Measuring the open-circuit voltage
(2a) and the short-circuit current (2b).

Figure 3. Measurements with variable load.

Figure 4. Characteristic curve for one output.
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Open-circuit voltage: U0 = –10.9 V (off),
U0=+10.9 V (on)
Short-circuit current: Imax = –22.4 mA (off),
Imax=24.4 mA (on)

A number of measurements must be taken
in order to get more exact data for a particular
PC: the voltage and current must be mea-

sured for a range of loads. A poten-
tiometer (say 10 kΩ) or a set of fixed
resistors of various values can be
used as a load. If two meters are
available, the voltage and current
can be measured simultaneously
(Figure 3a); if only one, the voltage
can be measured, and then, as long
as the resistor value is known, the
current can be calculated (Fig-
ure 3b). For the example here, we
used a set of standard resistors. The
voltage was measured and the cur-
rent calculated using the formula
I=U/R. The results can be seen in
Table 1.

Figure 4 shows how the output
voltage decreases under increasing
load. The lowest-valued resistor, at
10 Ω, gives practically a short-circuit,
but a voltage can still be measured.
The graph shows, to a first approxi-
mation, that the voltage falls linearly
with increasing current. The internal
resistance of the output can be cal-
culated from the gradient of the
graph to be about 430 Ω. A modern
bright LED has a forward voltage
drop of about 2.2 V. From the graph
we can read off the current: about
20 mA. This is about the maximum
allowable continuous current for a
normal LED. So our measurements
show that we can connect an LED
without a series resistor.

We used Microsoft Excel to
analyse the measurements. If you
wish, you can carry out the corre-
sponding experiments for your own
PC, which makes a good exercise in
measurement and analysis; or you
can move straight on to the follow-
ing experiments.

Uses for the 
serial interface
If the interface can drive LEDs
directly, the current must also be
enough for other purposes. As we
have already stated, up to approxi-
mately 60 mA can be drawn from the
interface. We look at a few applica-
tions here.

The following practical applica-
tion is a small battery charger oper-
ating from the serial interface. In the
circuit shown in Figure 5 the charg-
ing current is about 30 mA. That is
adequate for small batteries or for
trickle charging. We will work with
a negative output voltage: the

advantage is that the circuit works
immediately the PC is switched on,
without having to run a program. If
it is desired to use the opposite
polarity, the diodes can be reversed
and the outputs switched to +10 V
in software. You could also control
charging automatically in software.

Another example of a device that
can be driven directly from the serial
interface is a small DC motor. A
smooth-running motor, such as the
ones found in cassette recorders, can
be used, and will run satisfactorily
on 30 mA. To obtain this current,
several outputs are connected
together to drive the motor. With a
small modification to the ‘flasher’
program two outputs can be made to
switch simultaneously. The motor
can then be made to run in either
direction.
Small relays can also be connected
directly to the interface (Figure 6). A
diode is normally required to ensure
that the relay drops out when the
polarity is reversed.

Transistor 
switching stages 
Relays can be used to switch cur-
rents greater than that required by
LEDs. Cheaper, more elegant and
less extravangant is a transistor
stage. Figure 7 shows how a
100 mA bulb can be switched, using
an external power supply. The tran-
sistor used is a BC548. The principle
of the switching stage is very sim-
ple: the interface delivers a relatively
small base current to the transistor
which is amplified, so that the col-
lector current is sufficient to drive
the lamp.

How are the components for the
switching stage selected? The most
important considerations will be dis-
cussed briefly here. The operating
current of the bulb is 100 mA. This
can be provided by a BC548 without
difficulty: the maximum collector cur-
rent allowed is 300 mA. If the lamp
current is measured at the moment
it is switched on, it will be found
that it is considerably greater. When
the bulb is cold it has a resistance of
about 1/10 of that when it is operat-
ing. In theory, then, an instanta-
neous current of 1 A will flow. In
practice, however, the current
switched by the transistor is limited.
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Using a special multiplier circuit, a DC volt-
age of about 20 V can be obtained; using a
multiplier cascade a factor of 4 can be
achieved, giving about 40 V. The circuit con-
sists of four capacitors and four diodes (Fig-
ure 9). Here LEDs are used so that the cir-
cuit’s operation can be seen directly.

When the program is first run, the LEDs
flash relatively brightly. The brightness
decreases gradually to practically nothing,
when the capacitors have charged to their
final voltages. A voltage of 40 V can be mea-
sured at the output of the circuit. If the capac-
itors are discharged using a 1 kΩ resistor
across the output, the process starts again
from the beginning.

This circuit is an example of how LEDs can
be ‘stressed’ by high voltages. This is fine for
our experimental purposes, since experience
shows that LEDs can cope with the high volt-
ages without difficulty. One should be aware,
however, that such circuits hardly represent
exemplary engineering practice; for profes-
sional applications, silicon diodes (such as
the 1N4148) should of course be used.

(00074-3)

The bulb filament warms up after
only a few milliseconds and so the
overload is brief enough to be with-
stood. If you are not sufficiently reas-
sured by this, you can substitute a
BC338 which can withstand a peak
current of 800 mA.

The 2.2 kΩ base resistor will have
a potential of around 10 V across it.
When the output is on, the base cur-
rent will be about 4.5 mA. The
BC548 is available in three gain
groups with gains of between 110
and 800. Usually the BC548C is used,
with a gain of between 420 and 800.
In the pessimistic case a base cur-
rent of 100 mA/400 = 0.25 mA is
required; the actual base current
with a  2.2 kΩ base resistor is com-
fortably more than this. Note, how-
ever, that the gain falls at higher col-
lector currents. In any case, the tran-
sistor will be driven well into
saturation, guaranteeing the small-
est possible voltage drop between
emitter and collector and keeping
power dissipation low both during
operation and at the instant the tran-
sistor is switched on.

As can be seen, the choice of base
resistor is not arrived at by exact cal-
culation, but rather by estimation,
since normally the gain of the tran-
sistor is not known precisely. It is
interesting to try various base resis-
tors to discover over what range rea-
sonable results are obtained. With
too high a value, the transistor will
not be driven fully into saturation;
then the voltage drop becomes
greater and the transistor becomes
noticeably warm. Also, a resistor
which gives satisfactory results in
the ‘on’ state can nevertheless not
be able to provide sufficient drive at
the instant of turn-on. The lamp
appears to turn on slowly, during
which time there is considerable
power dissipated in the transistor.
With too low a base resistor power is
wasted in the control circuit, leading
also to higher dissipation and possi-
bly to overloading the base-emitter
diode by exceeding the maximum
allowable base current. The absolute
maximum allowable base current is
given in the datasheet.

In the circuit diagram a diode is
shown connected in reverse
between the base and emitter of the
transistor. This prevents excessive
negative voltages appearing at the

base. The maximum reverse voltage
of the base-emitter diode generally
lies at around –5 V. Breakdown
occurs at about –9 V, when a consid-
erable reverse current flows. The
transistor behaves like a Zener diode
with a voltage of about 9 V. Since in
the ‘off’ state the voltage will be
around –10 V, it must be limited.
With the diode fitted, the base volt-
age cannot fall below –0.6 V. It is a
worthwhile experiment to investi-
gate the effect of omitting the diode.
A reverse current indeed flows, but
the transistor nevertheless does not
conduct: the lamp remains off. The
circuit works even without the
diode. It is said that a continuous
reverse current over time impairs the
noise performance of the transistor;
but that will not be a problem here.
As so often, it makes a difference
whether one is experimenting or
designing a circuit in earnest; in the
latter case, the diode belongs in the
circuit.

AC experiments

The flasher program (Flasher.vbp)
produces an alternating voltage on
the DTR and RTS outputs, whose fre-
quency can be adjusted up to a limit
of about 10 Hz. This lets us try some
simple experiments with alternating
current. As is well known, a capacitor
appears as a resistor to alternating
current, conducting the current better
at higher frequencies. This can be
demonstrated using the circuit of
Figure 8. Here a capacitor is con-
structed from two electrolytics con-
nected back-to-back to enable oper-
ation with an alternating voltage.
This arrangement is sometimes used
in driving loudspeakers.

If the flasher program is set to a
low frequency, the LEDs alternately
flash briefly. At each transition the
capacitor is recharged. The current
then falls to zero as the voltage
across the capacitor approaches the
voltage on DTR. If the frequency is
increased, the flashes become more
frequent and the average brightness
of the LEDs also increases. The
capacitor presents a lower resis-
tance to the alternating current, and
so the (average) current increases.

The alternating voltage produced
has a peak value of about 10 V. The
peak-to-peak voltage is around 20 V.
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Figure 8. Capacitors as AC resistors.
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Typical RS-232 interface cards use a
type 1489 receiver (Figure 1). This
IC requires a single 5 V power sup-
ply. The schematic shows a simple
switching stage consisting of three
transistors. As can be seen, the
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PC Serial Peripheral
Design (4)
By B. Kainka

So far we have studied the characteristics of the RS-232 outputs in detail.
Now it is the turn of the inputs. The standard demands that an input voltage

of more than +3 V is considered as
‘high’, while a voltage lower than

–3 V is considered as ‘low’.
Between these voltages the level

is not defined.

Figure 1. Schematic of 1489 (source: Motorola).
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always be detected correctly. However, if an
LED is connected, the results may be differ-
ent: it can happen that the LED will glow, but
the input will still read as zero.
For some experiments it is important to know
the input current rather than the threshold
voltage. Here again we can make some sim-
ple measurements (Figure 4), and, again, we
observe a hysteresis. We measured:
Upper threshold: 0.18 mA
Lower threshold: 0.36 mA

From these results we can deduce that an RS-
232 output can easily drive, in parallel, more
inputs than the four available. From the volt-
ages and currents measured we can calculate
an input resistance of 5.6 kΩ. This result
seems plausible, looking at the schematic of
the 1489.

An important result from these mea-
surements is that a negative voltage is not
required for an input to read as zero, even
though the RS-232 standard prescribes a
voltage below –3 V. Many experiments can
therefore be carried out with only a single
power supply. There may, of course, be the
odd PC which behaves differently from our
example. In particular, some laptops
require negative input voltages. This must
be taken into account in some of our
experiments.

threshold voltage will not be very
different from the base-emitter
threshold of about 0.6 V. Taking into
account the voltage divider at the
input (consisting of a 3.8 kΩ and a
10 kΩ resistor) we arrive at a figure
of about 0.8 V. A further resistor RF
links the output of the second tran-
sistor stage back to the base of the
first, providing feedback. The circuit
therefore behaves as a Schmitt trig-
ger. There are therefore two switch-
ing thresholds, one when the input
voltage is rising and one when it is
falling. With the input in between
these two levels the output will
remain in its previous state. Accord-
ing to the datasheet the lower
threshold for the 1489 is 1 V, while
the higher is 1.25 V, a difference of
0.25 V. The 1489A, in contrast, has a
lower resistor RF, giving thresholds
of 1 V and 1.95 V.

Measurements
The 1489 sets the de facto standard
for RS-232 inputs. In modern PCs the
receiver is normally integrated into a
more complex IC, giving the manu-
facturer the choice of adhering to the
quasi-standard, or to interpret the
RS-232 standard differently. It is
therefore interesting to determine
the exact behaviour of the inputs on
a particular PC. For this, an
adjustable voltage source is
required: this does not mean that we
will need a piece of laboratory equip-
ment, since the interface itself pro-
vides the voltages we shall need. A
simple potentiometer suffices to help
make our measurements (Figure 2).

The IOTEST program from the
first instalment of this series is used
to make the measurements. The RTS
signal is turned on, and the DCD sig-
nal is monitored (Figure 3). Readings
are taken from the voltmeter as the
potentiometer is adjusted. The
author’s PC gave the following
results:
Lower threshold: 1.0 V
Upper threshold: 2.0 V

The input circuit in the PC is there-
fore a 1489A rather than a 1489.

These measurements can be
repeated for all four inputs on the
serial interface, and similar readings
will be obtained. Knowing the upper
threshold is useful for some possible
applications. For example, it is not
possible to detect a 1.5 V battery
connected to an input, whereas a
direct connection between an RS-232
output and an RS-232 input will
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Figure 2. Measuring the input
thresholds.

V

RTS

DTR

22k

DCD

GND
000074 - 4 - 12

+10V

–10V

Figure 3. Observing the state of the
inputs.

Figure 4. Measuring the input current.
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Listing 1
The Counter1 program

Dim DSRold, Counter1

Private Sub Form_Load()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then

i = OPENCOM(“COM1,1200,N,8,1”)

Option1.Value = True

End If

If i = 0 Then MsgBox (“COM

Interface Error”)

TXD 1

RTS 1

DTR 1

Counter1 = 0

DSRold = DSR()

Timer1.Interval = 20

End Sub

Private Sub Timer1_Timer()

DSRNew = DSR()

If DSRNew > DSRold Then

Counter1 = Counter1 + 1

Label1.Caption =

Str$(Counter1)

End If

DSRold = DSRNew

End Sub



Pulse counter
Building a counter in digital hard-
ware is a relatively complicated job.
When a PC is available, however, it
is easy. Here a pulse counter is con-
structed in Visual Basic. The DSR
signal serves as an input: a simple
push-button can be used to provide
pulses. Any other sensor could be
used, as long as it can provide the
correct voltage.

Listing 1 shows the program
Counter1; the results on the screen
are shown in Figure 7. Two global
variables are used. DSRold stores the
previous state of the DSR signal and
Counter1 stores the count. The two
variables are initialised in the first
routine. The counter is set to zero,
and DSRold is loaded with the state
of the DSR signal. The outputs are
also all turned on. This allows any of
the outputs to be connected to the
DSR input to provide a count signal.

The actual counting is done in the
timer routine. Windows calls this rou-
tine roughly once every 20 ms. Each
time the state of the DSR input is
compared with the state on the pre-
vious call. If the new state is greater
than the old state, a change from 0 to
1 must have happened: in other
words, a rising edge. These edges
are counted by incrementing the vari-
able Counter1 by one each time. The
value on the screen is only refreshed
when the variable changes.
The pulses are counted reliably
whether the button is pressed
rapidly or slowly, up to about 5
pulses per second. When the pulse
rate is faster than this, however, it

will be found that some pulses may
be missed. The exact limit depends
on the PC. With a timer interval of
20 ms a signal with low and high
periods of 20 ms should theoretically
be read correctly. A total period of
40 ms corresponds to a frequency of
25 Hz (25 pulses per second). How-
ever, problems are observed at lower
frequencies than this. From this we
deduce that Windows cannot reli-
ably maintain a timer interval of
20 ms. A similar observation was
made when we discussed the LED
flasher program. Even with a timer
interval of 50 ms definite irregularity
can be seen.
This counter program is certainly
not the fastest possible. Further-
more, we can easily construct a four-
way counter, as shown in Figure 8:
we simply need to write out the
code four times. Each time a differ-
ent input is read and processed.
Listing 2 shows the modified timer
routine.

(000074-4)
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Figure 7. The Counter1 program.

Figure 8. The four-way counter Counter2.

Listing 2
Pulse counter with four inputs

Private Sub Timer1_Timer()

DCDnew = DCD()

DSRnew = DSR()

CTSnew = CTS()

RInew = RI()

If DCDnew > DCDold Then

Counter1 = Counter1 + 1

Label1.Caption =

Str$(Counter1)

End If

If DSRnew > DSRold Then

Counter2 = Counter2 + 1

Label2.Caption =

Str$(Counter2)

End If

If CTSnew > CTSold Then

Counter3 = Counter3 + 1

Label3.Caption =

Str$(Counter3)

End If

If RInew > RIRold Then

Counter4 = Counter4 + 1

Label4.Caption =

Str$(Counter4)

End If

DCDold = DCDnew

DSRold = DSRnew

CTSold = CTSnew

RIold = RInew

End Sub

Figure 6. Three buttons can be fitted
directly to the circuit board.
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Figure 5. Up to four switches can be
connected.
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Reading the state 
of a switch
It is easy to use the serial interface to read
the state of up to four switches (Figure 5).
One output, for example DTR, is required: this
is set high, in order to generate the required
voltage. The switches can be connected via
a cable of practically any length. Up to three
typical ‘reset-switches’ can be fitted to the
circuit board (Figure 6), in which case three
input signals are used.



nected between an output that has
been set high and an input, there are
only two possible results: either the
resistor is sufficiently small that a
clear logic one is read at the input, or
it is not. If more precision is required,
a new approach is needed.

Charging and discharging

If computers are good at one thing,
it is counting. We can use this to
measure time: a program simply
counts the seconds (or milliseconds)
that pass until a certain event hap-
pens, for example when an input
changes state. If we can convert an
analogue quantity such as a resis-
tance into a time period, then it will
be easy to measure it with a com-
puter. In this example, we can use
an RC network. Figure 1 shows a
capacitor C charged and discharged
through a resistor R. A time constant
T is associated with an RC network:

T = RC. 

Here T is the time taken for the volt-
age across the capacitor to reach
63.2 % (=1-1/e) of its final value. This
can be derived from the exponential
charging characteristic, shown in
Figure 2. We shall not go into the
details of the physics here: it is
enough to know that the time taken
to charge to a given voltage is
directly proportional to the capaci-
tance and to the value of the resistor.

For a 100 µF capacitor and a 1 kΩ
resistor we have:

T = 1000 Ω × 0.0001 F = 0.1 s =
100 ms

A doubling of the resistance leads to
a doubling of the charging time. The
same goes for a doubling of the
capacitance. So, we can measure the
charging time and deduce the value
of either one of the resistor or the
capacitor, if the value of the other is
known. All that is needed is a pro-
gram that replaces the switch in Fig-
ure 1. Figure 3 shows a simple circuit
where the capacitor is connected not
to ground but to the TXD output.
There is a good reason for this: if an
electrolytic capacitor is used, it must
never be charged with the wrong
polarity, and this is guaranteed as
long as TXD remains at –10 V.

The circuit charges and dis-
charges the capacitor via DTR and
uses the DSR signal as an input to
determine when the set voltage is
reached. The threshold voltage will
be around 1.5 V. Comparing this with
the overall voltage range of –10 V to
+10 V, we see that the threshold is
about 11.5 V/20 V = 0.575 = 57.5 %
of the final voltage. This is not too far
from our value of 63.2 % given above
for the time constant. In any case,
the error factor introduced is con-
stant and can be compensated for
later. There are other sources of error,
which we discuss below.
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PC Serial Peripheral
Design (5)
Analogue measurements By B. Kainka

So far in this series we have used the PC only with digital signals: switching,
monitoring and counting. Now we turn to the analogue domain: our programs
will understand not just ‘yes’ and ‘no’, but ‘larger’ and ‘smaller’. 

Figure 1. Charging and discharging a capacitor
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C
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Figure 2. Charge/discharge curves and
definition of the time constant T

T
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If a voltage is applied to a serial port input, it
will be read as either a logic Low (0) or a logic
High (1). The PC cannot determine the actual
voltage present. Likewise, if a resistor is con-



Counting time
The time measurement takes place
in a ‘while’ loop as shown in List-
ing 1. The loop runs until either DSR
becomes set or the count reaches
1.5 seconds (timeout). The measure-
ment loop includes the command
DoEvents: this allows Windows to
process other events that may be
occurring in the system. During mea-
surements the user can still use the
mouse and other applications, and
indeed stop the program itself. This
is reassuring for the user, especially
when bugs in the program cause it
to function incorrectly. In general it
is always necessary, when program-
ming loops, to consider how the loop
can be forced to terminate. Other-
wise if the program gets into an infi-
nite loop the PC will need to be
reset, either by switching it off and
on again, or by using the familiar
Ctrl-Alt-Del chord. Adding a
DoEvents call makes the loop safe;
but this has a cost in timing accu-
racy, adding an uncertainty of
around 1 to 3 milliseconds to the
measured time.

µF not ms

If the units ‘ms’  in the window in
Figure 4 are replaced by ‘µF’, the
value shown is not too far off the true

one. As we said above, a 100 µF
capacitor and a 1 kΩ resistor give a
time constant of 100 ms. Similarly,
with a 10 µF capacitor we have a
time constant of 10 ms. This can be
tested by trying various capacitors
from the junk box. Often there will be
quite a large discrepancy between
the value measured and the value
printed on the capacitor: this is
down to the large tolerance (as much
as 50 %) quoted for electrolytics. The
capacitance of an electrolytic often
changes if it is stored for a long time.

The measurements are less accu-
rate for very large electrolytic capac-
itors, with values of say around
1000 µF. The indicated value will be
too small. The reason for this lies in
the program: the charged capacitor
must be discharged, which also
requires time. Our program uses a
timer with a period of two seconds:
one second is used for charging the
capacitor up to the input threshold
voltage; the remaining second, how-
ever, is not enough to discharge the
capacitor completely. The next
charge therefore takes less time.
There is a simple solution: a diode
can be used to accelerate the dis-
charge cycle. Figure 5 shows the cir-
cuit diagram, and Figure 6 shows
how it can be constructed. With this
modification to the circuit we can
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Listing 1. Measuring the time constant in milliseconds
Private Sub Form_Load()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then

i = OPENCOM(“COM1,1200,N,8,1”)

Option1.Value = True

End If

If i = 0 Then MsgBox (“COM Interface Error”)

TXD 0

RTS 0

DTR 0

Counter1 = 0

Timer1.Interval = 2000

End Sub

Private Sub Form_Unload(Cancel As Integer)

CLOSECOM

End Sub

Private Sub Timer1_Timer()

DTR 1

TIMEINIT

While (DSR() = 0) And (TIMEREAD() < 1501)

DoEvents

Wend

Label1.Caption = Str$(TIMEREAD()) + “ ms”

DTR 0

End Sub

Figure 3. Automatic charging from the PC
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Figure 4. Measurement with 100 µF and 1 kΩ

Figure 5. Improved capacitance measurement
circuit
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Figure 6. Construction details.
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reliably measure capacitors up to
about 1500 µF. Larger values are pos-
sible if more time is allowed by mak-
ing the appropriate changes to the
program. The timeout value in the
measurement routine and the overall
timer period must both be increased,
so that the program waits long
enough for the measurement to be
completed.

What about capacitors smaller
than 1 µF? In principle the charging
resistor could be increased. How-
ever, a problem then arises: the
impedance of the DSP input (around
3 kΩ) introduces measurement errors
that get more and more severe as the
value of the charging resistor is

increased. This problem could for
example be overcome using an oper-
ational amplifier with a high input
impedance, but this is outside the
scope of this series.

Software enhancements

It is much more interesting to try to
get around these limitations in soft-
ware. In particular it is possible to
use a timer with a resolution of one
microsecond. This increases the res-
olution of the capacitance measure-
ment one thousandfold, allowing
measurements in nanofarads (Fig-
ure 7). Library PORT.DLL provides
functions TIMEINITUS and
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Figure 7. Capacitance display in nF

Figure 8. Circuit 1 with 10 kΩ potentiometer.
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Figure 9. Measuring the charging time to
microsecond resolution

Figure 10. Charging time plotted against
charging resistance
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Listing 2. Modifications for program Cmeas2.frm

Private Sub Timer1_Timer()

F = 1.19

DTR 1

REALTIME (True)

TIMEINITUS

While (DSR() = 0) And (TIMEREADUS() < 1500000)

Wend

T = TIMEREADUS() * F

REALTIME (False)

T = Int(T)

Label1.Caption = Str$(T) + “ nF”

DTR 0

End Sub

Listing 3. Measuring the time constant in microseconds

Private Sub Timer1_Timer()

DTR 1

REALTIME (True)

TIMEINITUS

While (DSR() = 0) And (TIMEREADUS() < 1500000)

Wend

t = TIMEREADUS()

REALTIME (False)

Label1.Caption = Str$(t) + “ us”

DTR 0

End Sub

Listing 4. Determining the charging resistance
Private Sub Timer1_Timer()

DTR 1

REALTIME (True)

TIMEINITUS

While (DSR() = 0) And (TIMEREADUS() < 1500000)

Wend

T = TIMEREADUS()

T = T * 1.0000000001

R = 2200 + 7800 * (T - 76300) / (294600 - 76300)

REALTIME (False)

R = Int(R)

Label1.Caption = Str$(R) + “ Ohm”

DTR 0

End Sub



The reasons for deviation from the ideal
linear curve are the same as were found in
measuring capacitance. With very small
charging resistances we get an error due to
the non-linear internal resistance of the DTR
output driver; with large resistances (say
around 22 kΩ) the low impedance of the DSR
input causes error.

The data obtained can be converted into
an explicit equation which will let us calcu-
late a resistance with high accuracy. Listing 4
shows the measurement routine for resis-
tance. The calculation in question reads:

R = 2200 + 7800 * (T - 76300) / (294600 -
76300)

Using this formula we can obtain a measure-
ment accuracy of around 1 % in the range
1.5 kΩ to 15 kΩ. It should be borne in mind,
however, that this function, specific to a par-
ticular PC, will not give the same accuracy on
a different machine. The various measure-
ments and calculations must be carried out
afresh for each PC. It is sufficient to measure
the charging times for two resistors, say
2.2 kΩ and 10 kΩ and substitute these in the
formula. Failing this, it is possible simply to
consider where the greatest sources of error
lie: in this case our attention turns immedi-
ately to the electrolytic capacitor. Electrolyt-
ics often have a capacitance very different
from the value printed on them, which has a
significant effect on the charging time for a
given resistance. If a suitable correction fac-
tor is inserted in the line

T = T * 1.0000000001

then this error will be compensated for, and
reasonably usable results (see Figure 11) can
be obtained. A correction factor of greater
than or less than one will be required accord-
ing to whether the capacitor has a value
lower or higher than nominal.

(00074-5)

TIMEREADUS for this purpose,
where ‘US’ stands for microseconds
(µs). These functions are used in
Listing 2.

When we consider making mea-
surements in microseconds, we must
look at the effect of Windows on the
timing accuracy. In principle other
process running in parallel can inter-
rupt the measurement program and
cause large inaccuracies. This can be
prevented by raising the priority of
the measurement task, for which a
special function is provided in
PORT.DLL. Using REALTIME (True)
we can obtain greater reliability. It is
essential to set REALTIME (False)
after the measurement has been
taken. The exact accuracy achieved
depends on the PC: with a 200 MHz
Pentium MMX we measured varia-
tions of about 50 µs in the measured
value; with a faster PC this may be
reduced. If the same experiment is
carried out in Delphi, the timing
accuracy is about 20 times better.
The method is described in the Elek-
tor Electronics book ‘PC Interfaces
under Windows’, to be published
soon). It is nonetheless impressive
that an interpreted language such as
Visual Basic can achieve such timing
accuracy.

Alongside these changes to the
program, we can also improve the
basic accuracy of the measurements.
We have already seen two sources of
error in the simple equation t/ms =
C/µF, namely the threshold voltage
being slightly too low and the input
impedance of the DSR signal. There
is a third source of error: the DTR out-
put does not switch exactly between
-10 V and +10 V, but has an internal
resistance of roughly 430 Ω. The
charging resistance is therefore in
effect about 1430 Ω. Further, this
internal resistance is non-linearly
dependent on the current. The TXD
output also has an internal resis-
tance, making the voltage on the
capacitor slightly higher than
expected. The effects are too compli-
cated to be analysed mathematically,
and so we take the course preferred
by experienced engineers in the face
of a complicated calculation: test;
measure; calibrate. All the errors can
be condensed into a single correction
factor F which can be determined
with a calibration measurement. For
this we require a capacitor whose

value is accurately known (or which
can be accurately measured). Then
the correction factor can be adjusted
until the reading is correct. On the
author’s PC the value of F was found
to be 1.19; this value can of course be
used on any PC, but there will be
individual variations from machine to
machine which can only be compen-
sated for by determining the correct
value of F in each case.

Resistance measurement

We can measure resistance using
the same method; this is similar to
the way that potentiometers are
read by PC games cards. The circuit
for measuring resistance is shown in
Figure 8 and is essentially the same
as the capacitance-measuring cir-
cuit. Here, however, we use a fixed
capacitor and work with various
resistor values.

To test this circuit we use the pro-
gram (Listing 3) which measures the
charging time to the highest accu-
racy. We use again the technique
described above for measuring small
capacitors: REALTIME (True) gives
us good timing accuracy. Figure 9
shows how the results appear on the
screen.

The circuit can be tested using
metal film resistors with a tolerance
of 1 %. Measurements with an accu-
rate ohmmeter indicate that in gen-
eral the tolerance of such resistors is
rather better. A set of tests using
C=47 µF gave the following results:

R/kΩ T/ms
0 33.7

0.1 34
0.22 34.5
0.56 37.9

1 45.5
2.2 76.3
4.7 147.5
6.8 204.9
8.2 245.9
10 294.6
15 433.7
22 661.2

From the numbers alone a strong lin-
ear dependency can be seen. An
exact determination of the linearity
is possible using a graph: an analy-
sis using Excel produced the curve
shown in Figure 10. It can be seen
that linearity is good between
around 2.2 kΩ and 10 kΩ.
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Figure 11. Measurement using a 15 kΩ resistor.



The best demonstration involves a
light-dependent resistor (LDR). Fig-
ure 1 shows a simple light-measur-
ing circuit; Figure 2 shows how it
might be constructed. In this case
we are frequently interested in how
the reading changes over time, and
this is best shown on a graph.

Light measurement

In order to produce a graph on the
screen using Visual Basic, we need
to use a so-called PictureBox, which
can be dragged from the form’s tool-
bar. It is very important to set the
correct size. Visual Basic can use a
variety of units and here we want to
measure the size in pixels. The
ScaleMode property should be set to
‘3 - pixel’, and the box can be
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PC Serial 
Peripheral Design (6)
Measurements with sensors

By B. Kainka

In the previous instalment we measured capaci-
tances and resistances. You may have wondered
if this was all worth the effort, when accurate
and inexpensive digital multimeters are readily
available, but we shall see that we are able to
take readings from a wide variety of sensors by
measuring their resistance.
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Listing 1. Resistance Plotter
Dim y1, y2, x1, x2, n

Private Sub Form_Load()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then

i = OPENCOM(“COM1,1200,N,8,1”)

Option1.Value = True

End If

If i = 0 Then MsgBox (“COM Interface Error”)

TXD 0

RTS 0

DTR 0

Counter1 = 0

Timer1.Interval = 1000

n = 0

End Sub

Private Sub Form_Unload(Cancel As Integer)

CLOSECOM

End Sub

Private Sub Option1_Click()

i = OPENCOM(“COM1,1200,N,8,1”)

If i = 0 Then MsgBox (“COM1 not available”)

End Sub

Private Sub Option2_Click()

i = OPENCOM(“COM2,1200,N,8,1”)

If i = 0 Then MsgBox (“COM2 not available”)

End Sub

Private Sub Timer1_Timer()

DTR 1

REALTIME (True)

TIMEINITUS

While (DSR() = 0) And (TIMEREADUS() < 900000)

Wend

T = TIMEREADUS()

DTR 0

T = T * 0.932

R = 2200 + 7800 * (T - 76300) / (294600 - 76300)

REALTIME (False)

R = Int(R)

Label1.Caption = Str$(R) + “ Ohm”

y2 = 300 - R / 100

If n = 0 Then y1 = y2

x1 = n

n = n + 5

x2 = n

Picture1.Line (x1, y1)-(x2, y2)

y1 = y2

End Sub

Figure 1. Measurement using a light-dependent
resistor

DTR

DSR

TXD
–10V

D

1N4148

C

47µ

LDR

000074 - 6 - 11

Figure 3. Results from the LDR measurement

Figure 4. Amplifier for measuring skin resistance
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Figure 2. Construction of the LDR circuit
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dragged out to the correct size using
the mouse. For the present example
(plotter1.frm) a PictureBox 300 by
500 points is required.

We can draw in the PictureBox
using the Line command: see List-
ing 1 for an example. The plot is
drawn over a period of 100 seconds,
the x-coordinate advancing by 5 pix-
els as each reading is taken. A
global variable n must be specially
declared to store the current position
across calls to the timer procedure.
On the y-axis resistance (R/100) is
plotted, with a maximum value of

300 (30000 Ω=30 kΩ). Every second a
new value is plotted in the graph in
Figure 3 and a new line segment is
drawn from the last point to the new
one. The old coordinate values must
be stored, and global variables are
used for this purpose.

Skin resistance 
measurements
Another interesting ‘sensor’ is the
human skin: a pair of bare wires can
be wound around two fingers. The
resistance of the skin is not constant,



but varies according to its moisture levels.
When people lie, they sweat: so we can build
a lie detector by determining when the skin
resistance falls. The problem is that skin
resistance is typically rather higher than the
maximum value we can measure with our cir-
cuit: we need to use a transistor for amplifi-
cation (Figure 4, Figure 5).

An NPN transistor amplifies the small cur-
rent flowing through the skin, allowing our
simple A/D converter to measure relatively

high resistances. The input to the
circuit is protected by two additional
resistors, so that the measured resis-
tance will not be too small even if
the wires are shorted. The reading
obtained depends on the contact
area of the wires and the moisture
level of the skin. The results can be
viewed using the resistance plotter
program.

Temperature 
measurement
Temperature can also be measured
using our resistance measuring cir-
cuit. The circuit of Figure 6 shows
how easy it is to connect a 10 kΩ
NTC thermistor to build a very sim-
ple yet perfectly usable thermome-
ter.

The resistance characteristic of an
NTC thermistor can be approxi-
mated by an exponential curve. In
the following formula, T is the
absolute temperature in Kelvin
(T/°C + 273), while B is a value, typ-
ically between 2000 and 500 Kelvin,
provided by the thermistor manufac-
turer. In fact the value of B is not per-
fectly constant but rises gradually
with temperature: for this reason the
value B25/85 is often quoted, where

calibration has been performed at
25°C and 85°C.

An NTC thermistor is therefore spec-
ified to a first approximation by two
values: B and the thermistor’s nomi-
nal resistance R25. For a typical
10 kΩ NTC thermistor the value of B
might be 4300 K. Rearranging the
expression above and substituting
R25 = 10 kΩ we can derive the fol-
lowing line of Visual Basic to calcu-
late the value of T in Celsius:

Temp = 1 / (Log(R / 10000) / 4300 +
1 / 298) – 273

The VB ‘Log’ function calculates the
natural logarithm, often abbreviated
to ‘ln’ in mathematics textbooks.

In the program shown in Listing 2
we first carry out a resistance mea-
surement and then convert the mea-
sured value into temperature. The
results appear to one decimal place
as shown in Figure 7. Finally, List-
ing 3 shows how to convert the
reading from the Celsius scale into
Fahrenheit.

(000074-6)

R T R e
B

T K( ) = ⋅
⋅ −





25

1 1
298

BEGINNERSCOURSE

34 Elektor Electronics 2/2001

Figure 6. Connecting an NTC thermistor
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Figure 7. Temperature display

Listing 3. Conversion to the Fahrenheit scale
Although the German physicist Gabriel Daniel Fahrenheit died in 1736, some
people are still more comfortable working with temperatures measured in
Fahrenheit. They need only change a couple of lines of the program, as follows:

Temp = 32 + (Temp / 100 * 180)

Temp = Int(Temp * 10) / 10

Label1.Caption = Str$(Temp) + “ F”

Listing 2. Extensions for temperature measurement
Private Sub Timer1_Timer()

DTR 1

REALTIME (True)

TIMEINITUS

While (DSR() = 0) And (TIMEREADUS() < 1500000)

Wend

T = TIMEREADUS()

T = T * 1.0000000001

R = 2200 + 7800 * (T - 76300) / (294600 - 76300)

REALTIME (False)

R = Int(R)

Temp = 1 / (Log(R / 10000) / 4300 + 1 / 298) - 273

Temp = Int(Temp * 10) / 10

Label1.Caption = Str$(Temp) + “°C”

DTR 0

End Sub

Figure 5. Measuring skin resistance
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A real A/D converter with a voltage
input can be constructed using a sin-
gle transistor. The transistor in Fig-
ure 1 operates as a comparator, com-
paring the voltage on the capacitor
with a reference value, here 0.7 V.
The capacitor is alternately charged
and discharged by the DTR output
via a resistor, in such a way that the
voltage across it is always near to
the comparator reference. Depend-
ing on the input voltage the output
will need to be turned on more or
less frequently in order to establish
the desired voltage. The count of
these events leads to the converted
value. Figure 2 shows how the cir-
cuit can be constructed.

A/D converter program

The program in Listing 1 contains a
loop which attempts to keep the
voltage across the capacitor as close
as possible to the comparator refer-
ence voltage. Information on the
voltage across the capacitor is avail-
able on the RI input: if the voltage
lies above the switching threshold of
the transistor (about 0.7 V), a collec-
tor current flows and the voltage on

RI falls. Conversely a lower capaci-
tor voltage turns off the transistor
and RI goes high. The measurement
loop must drive the voltage on DTR
in the opposite direction: when the
voltage is too low, DTR must be
turned on; when it is too low, DTR
must be turned off, setting the out-
put voltage to –10 V. It is important
that the switching happens at pre-
cisely regular intervals, for example
exactly one per millisecond. The
number of millisecond periods for
which DTR is turned on must be
counted. If no input voltage is pre-
sent, we might expect that the posi-
tive and negative states of DTR
would be equally common, making
the averaged voltage across the
capacitor zero. If we look a little
more closely, however, we see that
we need to consider the threshold
voltage of the transistor (about
0.7 V), and so the positive state will
be slightly more frequent. With an
applied voltage the ratios change.
The charging current from the DTR
signal must compensate for the
charging current from the input.

A negative input voltage leads to
more positive DTR states, and con-
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PC Serial Peripheral
Design (7)
voltage measurement

By B. Kainka

In previous articles in this series we have described an A/D converter
based on a counter. A ‘real’ A/D converter, however, converts a voltage into
a measured value. Usually, this is thought to require an IC; however, as
we shall see, a much simpler alternative is available.

Figure 1. The simple A/D converter
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Figure 2. Voltage measurement with the simple
A/D converter.
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Input Display

open 118
0 V 110
–3.6 V 68
+3.6 V 152

We can see that an open-circuit input does
not display zero, but a rather higher value.
Comparing the measurement results for the
voltages -3.6 V, 0 V and +3.6 V, we can imme-
diately see that the difference between the
negative voltage and zero is 42, as is the dif-
ference between the positive voltage and
zero. This is encouraging, since it indicates
that the converter is linear.

The digital values can now be converted
into voltages. The following calculation does
the trick:

Voltage = (Display – 110)/11.2

This expression contains the measured zero
value and a multiplicative factor giving the
number of digital steps per Volt. Both these
values will vary from circuit to circuit. It is
therefore worthwhile calibrating the circuit.
Program AD2.frm (Listing 2) provides two
slider controls which start off at preset val-
ues. The left-hand slider, with a range of 105
to 115 and an initial setting of 110, sets the
zero offset. The right-hand slider, with a
range of 124 down to 100 and an initial set-
ting of 112, sets the slope. To use the program
first short the input leads together and set
the zero offset slider appropriately. Then a
known voltage must be applied to the input,
and the display set to the correct value using
the right-hand slider. The A/D converter con-
structed here uses as a reference the voltage
on the DTR output, which is not particularly

versely, a positive voltage leads to
more negative DTR states.

The program starts by setting
DTR to 1. This is important to ensure
that the capacitor is not charged
with the wrong polarity. The voltage
across the capacitor does not rise
above about 1 V, however, because
the base-emitter diode in the tran-
sistor starts to conduct. In this qui-
escent state the transistor is fully
turned on. In the measurement pro-
cedure proper, Timer1.Timer, a new
measurement is carried out ever
500 ms. Initially DTR is turned off
until RI changes state for the first
time. At this point the voltage across
the capacitor is equal to the thresh-

old voltage of the transistor. This
first loop has a timeout condition to
trap errors and runs for at most
300 ms.

The main measurement loop is
executed exactly 255 times, during
which the number of cases where
DTR is low is counted. The measure-
ment always lasts 255 ms and pro-
duces 256 different possible results
from 0 to 255 (Figure 3). This gives
the same resolution as an 8-bit A/D
converter.

Testing and calibration

Our first test delivered the following
results:
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Listing 1. Conversion of an 8 bit value
Private Sub Form_Load()
i = OPENCOM(“COM2,1200,N,8,1”)
If i = 0 Then

i = OPENCOM(“COM1,1200,N,8,1”)
Option1.Value = True

End If
If i = 0 Then MsgBox (“COM Interface Error”)
RTS 1
DTR 1
Counter1 = 0
Timer1.Interval = 500
End Sub

Private Sub Form_Unload(Cancel As Integer)
CLOSECOM
End Sub

Private Sub Option1_Click()
i = OPENCOM(“COM1,1200,N,8,1”)
If i = 0 Then MsgBox (“COM1 not available”)
RTS 1
DTR 1
End Sub

Private Sub Option2_Click()
i = OPENCOM(“COM2,1200,N,8,1”)
If i = 0 Then MsgBox (“COM2 not available”)
RTS 1
DTR 1
End Sub

Private Sub Timer1_Timer()
RTS 1
DTR 0
U = 0
TIMEINIT
While (RI() = 0) And (TIMEREAD() < 300)
Wend
TIMEINIT
For n = 1 To 255
If RI() = 1 Then DTR 1 Else DTR 0: U = U + 1
While TIMEREAD() < n
Wend

Next n
DTR 1
Label1.Caption = Str$(U) + “  “

End Sub

Figure 3. Display of digitised value.



reliable. Recalibration is therefore often nec-
essary. Figure 4 shows the program in action.

This simple A/D converter is reasonably
accurate and reliable. The resolution is about
0.1 V, and the measurement range is about
–6 V to +9 V. This can already find practical
application, for example in testing batteries,
and becomes all the more useful when the
input voltage can be plotted (Listing 3).
There are many other applications. Figure 5
shows the measured voltage across a capac-
itor being briefly negatively and positively
charged. The characteristic exponential dis-
charge curves can be clearly seen.

Hardware improvements

When the possible sources of error in our sim-
ple A/D converter are considered, we can see
that there are practically no aspects that can-
not be improved.

– The basic accuracy depends on the voltage
on the serial interface. It would be better to
use a proper voltage reference, although
that would make the circuit rather more
complicated.

– The switching threshold of a comparator

constructed from a simple NPN
transistor is not 0 V, bit rather
about 0.7 V. The exact value
depends on the chosen transistor
and on temperature. A tempera-
ture variation of one degree Celsius
changes the threshold by about
2 mV.

– The ratio of the two 27 kΩ resistors
affects the measurement; but if 5 %
tolerance types are used, the con-
tribution will be dominated by the
other sources of error.

– The measurement results do NOT
depend on the exact value of the
capacitor. This is a particular
advantage of this measurement
method. Even if a 100 µF capacitor

is used in place of the 47 µF capac-
itor, the results are not affected.

It is relatively straightforward to
improve on the design of the com-
parator (Figure 6). Instead of a sin-
gle transistor, two are used. The pair
of NPN transistors forms a differen-
tial amplifier, similar to the input
stage of an operational amplifier. In
this way the DC base-emitter volt-
age is reduced to a few millivolts.
Temperature variation is no longer a
problem because the two transistors
are affected to the same extent. The
total emitter current through the
4.7 kΩ resistor is about 2 mA. When
the input voltage is zero the current is
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Listing 2. The modified Timer procedure in AD2.frm
Private Sub Timer1_Timer()
RTS 1
DTR 0
U = 0
REALTIME (True)
TIMEINIT
While (RI() = 0) And (TIMEREAD() < 300)
Wend
TIMEINIT
For n = 1 To 255
If RI() = 1 Then DTR 1 Else DTR 0: U = U + 1
While TIMEREAD() < n
Wend

Next n
REALTIME (False)
U = (U - HScroll1.Value) / HScroll2.Value * 10
U = Int(U * 10) / 10
DTR 1
Label1.Caption = Str$(U) + “ V”

End Sub

Figure 4. A complete voltmeter.
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Figure 5. Voltage plotter Plotter2.frm.



input transistor no longer limits the voltage
across the capacitor during intervals between
measurements, and so this voltage will rise.
For this reason a silicon diode is included to
limit the voltage to 0.6 V. The effect of all of
these changes is that an open-circuit input
gives a reading of zero, and that the mea-
surement range is extended to 10 V with
either polarity. Figure 7 shows the construc-
tion of the improved converter.

Software optimisations

Changes are also needed in the software.
First it must be taken into account that the
DSR input signal is read in the inverted
sense: the input is high when the capacitor
voltage is above the threshold voltage. The
improved characteristics of the measurement
circuit also make it worthwhile to increase
the accuracy of the measurements. The main
loop is now executed 1000 times. Listing 4
shows the results. With a total input range of
20 V we have a resolution on 0.02 V. As seen
in Figure 8, a further decimal place can be
shown on the display.

(000074-7)

divided equally between the two
transistors. The voltage drop across
the collector resistor of the second
transistor is about 10 V, and so the

collector voltage remains around
zero and close to the switching
threshold of the DSR input.

Unlike in the original circuit, the
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Listing 4. Measurement routine 
with 1000 quantisation steps
Private Sub Timer1_Timer()
RTS 1
DTR 0
U = 0
REALTIME (True)
TIMEINIT
While (DSR() = 1) And (TIMEREAD() < 300)
Wend
TIMEINIT
For n = 1 To 1000
If DSR() = 0 Then DTR 1 Else DTR 0: U = U + 1
While TIMEREAD() < n
Wend

Next n
REALTIME (False)
U = (U - HScroll1.Value) / HScroll2.Value * 10
U = Int(U * 100) / 100
DTR 1
Label1.Caption = Str$(U) + “ V”

End Sub
End Sub

Listing 3. Plotter procedures Plotter2.frm

Dim y1, y2, x1, x2, n

Private Sub Command1_Click()
n = 0
End Sub

Private Sub Timer1_Timer()
RTS 1
DTR 0
U = 0
REALTIME (True)
TIMEINIT
While (RI() = 0) And (TIMEREAD() < 300)
Wend
TIMEINIT
For i = 1 To 255
If RI() = 1 Then DTR 1 Else DTR 0: U = U + 1
While TIMEREAD() < i
Wend

Next i
REALTIME (False)
U = (U - HScroll1.Value) / HScroll2.Value * 10
DTR 1
y2 = 100 - U * 10
If n = 0 Then y1 = y2: Picture1.Cls
x1 = n

n = n + 5
x2 = n
Picture1.Line (x1, y1)-(x2, y2)
y1 = y2

End Sub
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Figure 7. Construction of the improved
comparator on the prototyping board.

Figure 8. Result displayed to two decimal
places.
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interactive platform for everyone interested in 
electronics. From beginner to diehard, from student to 
lecturer... Information, education, inspiration and 
entertainment. Analog and digital; practical and 
theoretical; software and hardware... 
HandsOn Technology provides Designs, ideas and 
solutions for today's engineers and electronics 
hobbyists.

Creativity for tomorrow's better living... 
HandsOn Technology believes everyone should have the tools, hardware, and resources to play 
with cool electronic gadgetry. HandsOn Technology's goal is to get our "hands On" current 
technology and information and pass it on to you! We set out to make finding the parts and 
information you need easier, more intuitive, and affordable so you can create your awesome 
projects. By getting technology in your hands, we think everyone is better off
We here at HandsOn like to think that we exist in the same group as our customers >> curious 
students, engineers, prototypers, and hobbyists who love to create and share. We are 
snowboarders and rock-climbers, painters and musicians, engineers and writers - but we all have 
one thing in common...we love electronics! We want to use electronics to make art projects, 
gadgets, and robots. We live, eat, and breathe this stuff!!
If you have more questions, go ahead and poke around the website, or send an email to 
sales@handsontec.com. And as always, feel free to let your geek shine - around here, we 
encourage it... 


